Objective clinical response by \textit{KRAS} mutation-specific TCR-T cell therapy in previously treated advanced non-small cell lung cancer

\textbf{Marcelo V. Negrao, MD}
Assistant Professor
Department of Thoracic / Head and Neck Medical Oncology
University of Texas MD Anderson Cancer Center
Forward Looking Statements Disclaimer

This presentation contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, as amended. Forward-looking statements are statements that are not historical facts, and in some cases can be identified by terms such as “may,” “will,” “could,” “expects,” “plans,” “anticipates,” “believes” or other words or terms of similar meaning. These statements include, but are not limited to, statements regarding Alaunos Therapeutics, Inc.'s (“Alaunos" or the "Company") business and strategic plans, the anticipated outcome of preclinical and clinical studies by the Company or its third-party collaborators, the Company's manufacturing capabilities and the timing of the Company's research and development programs.

Although the management team of Alaunos believes that the expectations reflected in such forward-looking statements are reasonable, investors are cautioned that forward-looking information and statements are subject to various risks and uncertainties, many of which are difficult to predict and generally beyond the control of Alaunos, that could cause actual results and developments to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, among other things, the uncertainties inherent in research and development, future clinical data and analysis, whether any of Alaunos’ product candidates will advance further in the preclinical research or clinical trial process, including receiving clearance from the U.S. Food and Drug Administration or equivalent foreign regulatory agencies to conduct clinical trials and whether and when, if at all, they will receive final approval from the U.S. Food and Drug Administration or equivalent foreign regulatory agencies and for which indication and risk factors discussed or identified in the public filings with the Securities and Exchange Commission made by Alaunos, including those risks and uncertainties listed in the most recent periodic report filed by Alaunos with the Securities and Exchange Commission. This information is being provided as of the date of this presentation, and Alaunos does not undertake any obligation to update or revise the information contained in this presentation whether as a result of new information, future events, or any other reason.
Adoptive T-Cell Therapy has Activity in Solid Tumors

- Melanoma: expanded TILs ORR 34-56%\(^1\)
- HPV+ SCC: HPV-TIL ORR 18-28%\(^2\)
- MBC: enriched TILs ORR 67%\(^3\)
- NSCLC: expanded TILs response rate 46%\(^4\)
- CRC: TIL produced durable response\(^5\)
- PDAC: durable response and persistence of TCR-T cells\(^6\)

KRAS Mutations are Logical Targets for T-Cell Therapy due to High Prevalence in Epithelial Solid Tumors

1. Judd et al. Mol Cancer Ther. 2021
2. Catalogue of Somatic Mutations in Cancer (COSMIC) database https://cancer.sanger.ac.uk/cosmic
Phase I/II Trial to Determine the Safety and Efficacy of Non-viral TCR-T Cell Therapy for Treatment of Solid Tumors

- ClinicalTrials.gov: NCT05194735
- Solid tumors failed 1+ lines of therapy
- HLA + cancer gene mutation match for TCR library
- Accelerated dose escalation: BOIN design
- 3 dose levels: 1 - <10x10^9 / 10 - <70x10^9 / 70 - 150x10^9
- Objectives: safety / RP2D / manufacturing feasibility

Negrao et al. ASCO 2022 / Morelli et al. ESMO 2022
TCR Library Designed to Target Tumor Neoantigens Derived from Hotspot Mutations

- Common cancer gene mutations: \textit{KRAS, TP53, EGFR}
- Common HLAs: A*02:01 / A*11:01
- Library expansion: identification of novel anti-tumor reactive TCRs
- More TCRs = more eligible patients

<table>
<thead>
<tr>
<th>Genes</th>
<th>Mutations</th>
<th>HLA Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS</td>
<td>G12D</td>
<td>A11:01 / C08:02</td>
</tr>
<tr>
<td></td>
<td>G12V</td>
<td>A11:01 / C01:02</td>
</tr>
<tr>
<td>TP53</td>
<td>R175H</td>
<td>A02:01 / DRB113:01</td>
</tr>
<tr>
<td></td>
<td>R248W</td>
<td>A*68:01</td>
</tr>
<tr>
<td></td>
<td>Y220C</td>
<td>A02:01 / DRB302:02</td>
</tr>
<tr>
<td>EGFR</td>
<td>E746-A750del</td>
<td>DPB1*01:01</td>
</tr>
</tbody>
</table>
Non-viral *Sleeping Beauty* System Designed to Enable Manufacture of TCR-T Cells without Complex Gene Editing

- Efficient integration without the complexity of gene editing or viral approaches
- Rapid, cost-effective manufacturing
- Accommodates large transgene size
- Expected to be scalable for clinical production
Patient 1: Immune Checkpoint Inhibitor and Chemotherapy Refractory KRAS G12D NSCLC

- 34yo, female, never smoker, lung adenocarcinoma
- Left lower lobectomy and adjuvant cisplatin and vinorelbine x 4 cycles
- Disease recurrence in the lungs 4 months after adjuvant treatment
- KRAS G12D mutation positive / tumor PD-L1 expression = 10%
- Carboplatin, pemetrexed, pembrolizumab x 4 cycles with response followed by pemetrexed and pembrolizumab maintenance x 22 cycles with disease progression
Patient 1: Immune Checkpoint Inhibitor and Chemotherapy Refractory KRAS G12D NSCLC

- Durvalumab + CTLA4 inhibitor + MEK inhibitor on trial – discontinued due to progression
- SHP2 inhibitor single-agent on trial – discontinued due to progression
- Library TCR match:

| KRAS G12D | HLA-A*11:01 |
TCR-T Cells Observed to Specifically Recognize and Kill Targets Expressing KRAS G12D Presented by HLA-A*11:01

Neoantigen-Specific Activation

Effectors Cytokine Secretion

Tumor Killing

Preclinical Data
High TCR Expression and Purity of TCR-T Cells Manufactured with *Sleeping Beauty* Transposition

TCR-T Infusion Product (Patient 1: KRAS G12D/HLA-A*11:01)

<table>
<thead>
<tr>
<th></th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viability</td>
<td>95.1%</td>
</tr>
<tr>
<td>Total TCR-T Cells</td>
<td>9x10⁹</td>
</tr>
<tr>
<td>CD3+ Purity</td>
<td>99.7%</td>
</tr>
<tr>
<td>TCR+</td>
<td>95.2%</td>
</tr>
<tr>
<td>CD4:CD8 Ratio</td>
<td>0.32</td>
</tr>
<tr>
<td>VCN</td>
<td>5</td>
</tr>
</tbody>
</table>
Patient 1 Had Manageable Safety Events During Lymphodepletion Chemotherapy

<table>
<thead>
<tr>
<th>Lymphodepletion Drug (LD)</th>
<th>Dose</th>
<th>Days of Administration Prior to TCR-T Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide</td>
<td>60 mg/kg</td>
<td>-8, -7</td>
</tr>
<tr>
<td>Fludarabine</td>
<td>25 mg/m²</td>
<td>-8, -7, -5, -4, -3</td>
</tr>
</tbody>
</table>

Note: Day -6 Fludarabine dose withheld

Hospital Admission

Chest Pain - Small R pneumothorax
Related to pre-treatment biopsy

Day

-9 -8 -7 -6 -5 -4 -3

Hypoxia Gr2 / Hypotension Gr3 / Tachycardia Gr3
O2 nasal cannula 3L / hydration w/ albumin
Related to LD chemotherapy

LD = Lymphodepletion
Patient 1 Had Manageable Safety Events After Lymphodepletion Chemotherapy and TCR-T cell infusion

<table>
<thead>
<tr>
<th>TCR-T Cell Target</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>KRAS G12D/HLA-A*11:01</td>
<td>9x10^9 TCR+ T Cells (Dose Level 1)</td>
</tr>
</tbody>
</table>

- **TCR-T Cell Target Dose**
 - KRAS G12D/HLA-A*11:01 9x10^9 TCR+ T Cells (Dose Level 1)

Hospital Discharge Day 11

CRS Gr2 – 6hrs post-TCR-T infusion
- Hypoxia / Tachycardia / Fever
- O2 nasal cannula 2L / anti-pyretics / IV fluids / self-limited

Anemia – Hb 7.0 – Gr3
- PRBC 1 unit - D5

Thrombocytopenia – 22k – Gr4
- Self-limited / no bleeding
Patient 1 Had Transient Elevation in Inflammatory Cytokines Associated with Onset and Resolution of CRS

CRS = Cytokine Release Syndrome
Patient 1: Complete Resolution of Right Lower Lobe Lesion

Baseline 1.3 cm

Week 6 0.0 cm

Week 12 0.0 cm
Patient 1: Reduction of Right Upper Lobe Lesion

- Baseline: 1.3 cm
- Week 6: 1.1 cm
- Week 12: 1.0 cm
Patient 1: Reduction of Right Hilar Lymphadenopathy and of Non-Measurable Right Upper Lobe Lesion

Baseline: 1.5 cm
Week 6: 1.1 cm
Week 12: 1.0 cm
Patient 1 Had a Confirmed Objective Partial Response at Week 12

<table>
<thead>
<tr>
<th>Target Lesions (mm)</th>
<th>Baseline</th>
<th>Week 6</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Right lower lobe</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>#2: Right upper lobe</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>#3: Right hilar lymph node</td>
<td>15</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Sum of Diameters (mm)</td>
<td>41</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Percent Change</td>
<td></td>
<td>-46.30%</td>
<td>-51.20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Target Lesions</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilateral lung nodules</td>
<td>Non-CR/Non-PD</td>
<td>Non-CR/Non-PD</td>
<td></td>
</tr>
</tbody>
</table>

Overall Response

- Baseline:
- Week 6: Partial Response
- Week 12: Partial Response
Patient 1 TCR-T Cells Exhibited Rapid Expansion and Ongoing Persistence at Week 12

Circulating TCR-T Cells

<table>
<thead>
<tr>
<th>Time</th>
<th>TCR-T Cells/μL</th>
<th>TCR-T Copies/μg</th>
<th>% TCR-T+ of CD3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 4</td>
<td>1,038</td>
<td>5x10^5</td>
<td>98.4%</td>
</tr>
<tr>
<td>Week 12</td>
<td>134</td>
<td>2.5x10^4</td>
<td>22.5%</td>
</tr>
</tbody>
</table>

Gated on CD3+

- **Baseline**: 0.6%
- **Day 4**: 98.4%
- **Week 4**: 42.0%
- **Week 6**: 10.0%
- **Week 12**: 22.5%
Patient 1 Serum Interferon-γ was Associated with TCR-T Cell Expansion and Persistence

CRS = Cytokine Release Syndrome
Patient 2: Previously Treated Advanced CRC

- 54yo, female, metastatic colorectal cancer
- Progressed on one prior line of therapy (FOLFIRI+Bevacizumab)
- Library TCR match: TP53 R175H, HLA-A*02:01
- TCR-T infusion of 64×10^9 TCR-T cells - Dose Level 2
Patient 2 Had Manageable Safety Events After TCR-T Cell Infusion

<table>
<thead>
<tr>
<th>TCR-T Cell Target</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP53 R175H/HLA-A*02:01</td>
<td>64×10^9 TCR+ T Cells (Dose Level 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymphodepletion Drug</th>
<th>Dose</th>
<th>Days of Administration Prior to TCR-T Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide</td>
<td>60 mg/kg</td>
<td>-7, -6</td>
</tr>
<tr>
<td>Fludarabine</td>
<td>25 mg/m2</td>
<td>-7, -6, -5, -4, -3</td>
</tr>
</tbody>
</table>

CRS Gr3
Fever / Hypotension / Tachycardia / Hypoxia
O2 HFNC 40L 50% and Tocilizumab

CRS Gr2
Hypoxia
O2 Nasal Cannula 4L

HFNC = High flow nasal cannula

CRI-ENCI-AACR SIXTH INTERNATIONAL CANCER IMMUNOTHERAPY CONFERENCE: TRANSLATING SCIENCE INTO SURVIVAL
Patient 2 Achieved Best Overall Response of Stable Disease

<table>
<thead>
<tr>
<th>Target Lesions</th>
<th>Baseline</th>
<th>Week 6</th>
<th>Week 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: Pelvic Mass (mm)</td>
<td>65</td>
<td>48</td>
<td>67</td>
</tr>
<tr>
<td>#2: Retroperitoneal Lymph Node (mm)</td>
<td>27</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Sum of Diameters (mm)</td>
<td>92</td>
<td>78</td>
<td>95</td>
</tr>
<tr>
<td>Percent Change</td>
<td></td>
<td>-15.20%</td>
<td>21.80%</td>
</tr>
<tr>
<td>New Lesion</td>
<td>No</td>
<td></td>
<td>Liver / Lung</td>
</tr>
<tr>
<td>Overall Response</td>
<td>Stable Disease</td>
<td></td>
<td>Progressive Disease</td>
</tr>
</tbody>
</table>

Note: Patient off study due to disease progression
Treatment of Patients 1 and 2 was Tolerable with a Manageable Safety Profile

- Cytopenias expected with lymphodepletion regimen were observed in both patients
- Manageable CRS observed
 - No mechanical ventilation
 - No ICU admission
 - No vasopressors
- No TCR-T cell related DLTs
- No ICANS

DLT = Dose limiting toxicity; ICANS = Immune effector cell-associated neurotoxicity syndrome
Confirmed Objective Response in Immune Checkpoint Inhibitor Refractory KRAS G12D-mutant NSCLC Treated with TCR-T Cells

- Immune checkpoint inhibitor refractory advanced NSCLC patient treated with TCR-T cells has confirmed partial response
- First confirmed response to TCR-T cell therapy targeting hotspot cancer gene mutation in advanced NSCLC to our knowledge
- KRAS G12D / HLA-A*11:01: viable target for TCR-T cell therapy
Sleeping Beauty System is a Promising Platform for TCR-T Cell Therapy and Trial Enrollment is Ongoing

- First report of successful TCR-T cell therapy using non-viral Sleeping Beauty system for solid tumors
- Proof of concept of manufacturing TCR-T targeting KRAS and TP53
- Ongoing persistence of TCR-T cells at Week 12 at Dose Level 1 in Patient 1
- Phase I dose escalation: enrollment ongoing for patients with advanced solid tumors harboring KRAS, TP53 and EGFR mutations
Acknowledgements

MDACC Study Team

- Marcelo V. Negrao
- Maria Pia Morelli
- Partow Kebriaei
- Amir Jazaeri
- Benny Johnson
- Shubham Pant
- Laura Henderson
- Lauren McGuire
- Rasoul Irannezhad
- Veronica Novegil
- Kamisha Jernigan
- John V. Heymach
- Scott E. Kopetz

Alaunos Therapeutics

- Nathan Demars
- Jaymes Holland
- Matthew R. Collinson-Pautz
- Frances Adeyemi
- Amanda Montoya
- Victor Carpio
- Lauren Heese
- Jourdan Anderson
- Victor Cruz
- Vanessa Jackson
- Kim Cooper
- Beatriz A. Santillan
- Abhishek Srivastava
- Ron Weitzman
- Drew Deniger

ClinicalTrials.gov: NCT05194735

CRI-ENCi-AACR SIXTH INTERNATIONAL CANCER IMMUNOTHERAPY CONFERENCE: TRANSLATING SCIENCE INTO SURVIVAL